Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609217

RESUMO

The precise wiring of the nervous system relies on neurons extending their processes at the right time and place to find their appropriate synaptic partner. The mechanisms that determine when and where neurons extend their neurites during synaptogenesis remains a central question in the field. In the present study, we developed a cell culture system coupled with live imaging to investigate the wiring mechanisms in the developing nervous system. We focused on horizontal cells which are interneurons in the mammalian outer retina known to synapse selectively to distinct photoreceptors. Our data shows cultured horizontal cells extend neurites in a similar manner as in vivo with horizontal cells isolated from young mice extending more complex processes compared to those from adult retinas. In addition, horizontal cells cultured alone do not extend neurites and require other retinal cells for neurite extension suggesting that there must be extrinsic cues that promote neurite outgrowth. Moreover, these extrinsic cues do not appear to be solely secreted factors as supernatant from wild-type retinas is not sufficient to promote neurite outgrowth. In summary, we established a new system that can be used to decipher the mechanisms involved in neuronal wiring of the developing central nervous system.

3.
J Neurosci ; 43(29): 5277-5289, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37369589

RESUMO

Neural circuit assembly is a multistep process where synaptic partners are often born at distinct developmental stages, and yet they must find each other and form precise synaptic connections with one another. This developmental process often relies on late-born neurons extending their processes to the appropriate layer to find and make synaptic connections to their early-born targets. The molecular mechanism responsible for the integration of late-born neurons into an emerging neural circuit remains unclear. Here, we uncovered a new role for the cytoskeletal protein ßII-spectrin in properly positioning presynaptic and postsynaptic neurons to the developing synaptic layer. Loss of ßII-spectrin disrupts retinal lamination, leads to synaptic connectivity defects, and results in impaired visual function in both male and female mice. Together, these findings highlight a new function of ßII-spectrin in assembling neural circuits in the mouse outer retina.SIGNIFICANCE STATEMENT Neurons that assemble into a functional circuit are often integrated at different developmental time points. However, the molecular mechanism that guides the precise positioning of neuronal processes to the correct layer for synapse formation is relatively unknown. Here, we show a new role for the cytoskeletal scaffolding protein, ßII-spectrin in the developing retina. ßII-spectrin is required to position presynaptic and postsynaptic neurons to the nascent synaptic layer in the mouse outer retina. Loss of ßII-spectrin disrupts positioning of neuronal processes, alters synaptic connectivity, and impairs visual function.


Assuntos
Proteínas do Citoesqueleto , Espectrina , Masculino , Camundongos , Feminino , Animais , Espectrina/metabolismo , Neurônios/metabolismo , Citoesqueleto/metabolismo
4.
Cell Mol Life Sci ; 79(1): 63, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006382

RESUMO

Conventional angiogenic factors, such as vascular endothelial growth factor (VEGF), regulate both pathological and physiological angiogenesis indiscriminately, and their inhibitors may elicit adverse side effects. Secretogranin III (Scg3) was recently reported to be a diabetes-restricted VEGF-independent angiogenic factor, but the disease selectivity of Scg3 in retinopathy of prematurity (ROP), a retinal disease in preterm infants with concurrent pathological and physiological angiogenesis, was not defined. Here, using oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, we quantified an exclusive binding of Scg3 to diseased versus healthy developing neovessels that contrasted sharply with the ubiquitous binding of VEGF. Functional immunohistochemistry visualized Scg3 binding exclusively to disease-related disorganized retinal neovessels and neovascular tufts, whereas VEGF bound to both disorganized and well-organized neovessels. Homozygous deletion of the Scg3 gene showed undetectable effects on physiological retinal neovascularization but markedly reduced the severity of OIR-induced pathological angiogenesis. Furthermore, anti-Scg3 humanized antibody Fab (hFab) inhibited pathological angiogenesis with similar efficacy to anti-VEGF aflibercept. Aflibercept dose-dependently blocked physiological angiogenesis in neonatal retinas, whereas anti-Scg3 hFab was without adverse effects at any dose and supported a therapeutic window at least 10X wider than that of aflibercept. Therefore, Scg3 stringently regulates pathological but not physiological angiogenesis, and anti-Scg3 hFab satisfies essential criteria for development as a safe and effective disease-targeted anti-angiogenic therapy for ROP.


Assuntos
Inibidores da Angiogênese/farmacologia , Cromograninas/imunologia , Cromograninas/metabolismo , Neovascularização Patológica/genética , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/patologia , Animais , Capilares/metabolismo , Cromograninas/antagonistas & inibidores , Cromograninas/genética , Modelos Animais de Doenças , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Neovascularização Retiniana/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
5.
Front Neural Circuits ; 15: 635849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643000

RESUMO

Neural circuit formation is an intricate and complex process where multiple neuron types must come together to form synaptic connections at a precise location and time. How this process is orchestrated during development remains poorly understood. Cell adhesion molecules are known to play a pivotal role in assembling neural circuits. They serve as recognition molecules between corresponding synaptic partners. In this study, we identified a new player in assembling neural circuits in the outer retina, the L1-family cell adhesion molecule Neurofascin (Nfasc). Our data reveals Nfasc is expressed in the synaptic layer where photoreceptors make synaptic connections to their respective partners. A closer examination of Nfasc expression shows high levels of expression in rod bipolars but not in cone bipolars. Disruption of Nfasc using a conditional knockout allele results in selective loss of pre- and post-synaptic proteins in the rod synaptic layer but not in the cone synaptic layer. Electron microscopic analysis confirms that indeed there are abnormal synaptic structures with less dendrites of rod bipolars innervating rod terminals in loss of Nfasc animals. Consistent with these findings, we also observe a decrease in rod-driven retinal responses with disruption of Nfasc function but not in cone-driven responses. Taken together, our data suggest a new role of Nfasc in rod synapses within the mouse outer retina.


Assuntos
Retina , Sinapses , Animais , Camundongos , Microscopia Eletrônica , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes
6.
Neuron ; 108(1): 111-127.e6, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795398

RESUMO

Cajal recognized that the elaborate shape of neurons is fundamental to their function in the brain. However, there are no simple and generalizable genetic methods to study neuronal or glial cell morphology in the mammalian brain. Here, we describe four mouse lines conferring Cre-dependent sparse cell labeling based on mononucleotide repeat frameshift (MORF) as a stochastic translational switch. Notably, the optimized MORF3 mice, with a membrane-bound multivalent immunoreporter, confer Cre-dependent sparse and bright labeling of thousands of neurons, astrocytes, or microglia in each brain, revealing their intricate morphologies. MORF3 mice are compatible with imaging in tissue-cleared thick brain sections and with immuno-EM. An analysis of 151 MORF3-labeled developing retinal horizontal cells reveals novel morphological cell clusters and axonal maturation patterns. Our study demonstrates a conceptually novel, simple, generalizable, and scalable mouse genetic solution to sparsely label and illuminate the morphology of genetically defined neurons and glia in the mammalian brain.


Assuntos
Astrócitos/ultraestrutura , Encéfalo/ultraestrutura , Microglia/ultraestrutura , Neurônios/ultraestrutura , Células Horizontais da Retina/ultraestrutura , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Mutação da Fase de Leitura/genética , Proteínas de Fluorescência Verde/genética , Integrases , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Repetições de Microssatélites/genética , Neurônios/metabolismo , Neurônios/patologia , Células Horizontais da Retina/metabolismo , Células Horizontais da Retina/patologia
7.
Neuron ; 98(1): 109-126.e8, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29576390

RESUMO

Screens for genes that orchestrate neural circuit formation in mammals have been hindered by practical constraints of germline mutagenesis. To overcome these limitations, we combined RNA-seq with somatic CRISPR mutagenesis to study synapse development in the mouse retina. Here synapses occur between cellular layers, forming two multilayered neuropils. The outer neuropil, the outer plexiform layer (OPL), contains synapses made by rod and cone photoreceptor axons on rod and cone bipolar dendrites, respectively. We used RNA-seq to identify selectively expressed genes encoding cell surface and secreted proteins and CRISPR-Cas9 electroporation with cell-specific promoters to assess their roles in OPL development. Among the genes identified in this way are Wnt5a and Wnt5b. They are produced by rod bipolars and activate a non-canonical signaling pathway in rods to regulate early OPL patterning. The approach we use here can be applied to other parts of the brain.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Mutagênese/fisiologia , Neurópilo/metabolismo , Retina/metabolismo , Análise de Sequência de RNA/métodos , Via de Sinalização Wnt/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurópilo/química , Coelhos , Retina/química , Retina/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...